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The famous “spooky action at a distance” in the EPR-scenario is shown to be a local
interaction, once entanglement is interpreted as a kind of “nearest neighbor” relation
among quantum systems. Furthermore, the wave function itself is interpreted as en-
coding the “nearest neighbor” relations between a quantum system and spatial points.
This interpretation becomes natural, if we view space and distance in terms of relations
among spatial points. Therefore, “position” becomes a purely relational concept. This
relational picture leads to a new perspective onto the quantum mechanical formalism,
where many of the “weird” aspects, like the particle-wave duality, the non-locality of
entanglement, or the “mystery” of the double-slit experiment, disappear. Furthermore,
this picture circumvents the restrictions set by Bell’s inequalities, i.e., a possible (real-
istic) hidden variable theory based on these concepts can be local and at the same time
reproduce the results of quantum mechanics.

KEY WORDS: relational space; relational interpretation of the wave function;
locality; Bell’s theorem.
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1. INTRODUCTION

For many people, our quantum world still encompasses a few “mysteries”:

• How can an object behave like a pointlike particle in some cases and like
an extended wave in other cases? (Particle-wave duality)

• In particular, how can an object (say, an elementary particle) appear point-
like whenever it is measured directly, but on the other hand appear to be
at two (or several) places at the same time when it is not observed (like
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the electron in the double slit experiment or the photon in a Mach-Zehnder
interferometer)?

• How can the results of measurements on two entangled particles be corre-
lated even when they are “miles away”, although, according to the formal-
ism of quantum mechanics, we are not allowed to assume that the output
of these measurements is predetermined in adavance (Einstein’s spooky
action at a distance).

Furthermore, for all those, who favour an “objective and realistic” interpretation
of the fundamental principles of our world, Bell’s inequalities imply a major draw-
back. The experimental evidence in favor of quantum mechanics and the violation
of Bell’s inequalities in our physical world is overwhelming and no longer a matter
of serious debates. The generally accepted conclusion is that the non-deterministic
aspects of quantum mechanics are fundamental, i.e., already the assumption of a
“hidden variable” determining the output of certain experiments in advance leads
to contradictions unless we give up locality. Hence, all reformulations of quantum
mechanics based on realism, like e.g. Bohm’s quantum mechanics, include non-
local interactions. The apparent discrepancy with the theory of relativity can
only be overcome by proving that these non-local (hidden) interactions cannot be
used for information transfer and should, therefore, not be interpreted as signals.
However, the “spooky action at a distance”, as Einstein called it, remains.

At a closer inspection, all the problems mentioned above are in some way
or another related to what we mean by “locality”, “position”, “distance”, “place”,
and in particular “to be somewhere”. All definitions of locality (including the
precise definition provided by the algebraic formalism of quantum mechanics) are
based on a classical concept of space-time and may, therefore, not be completely
consistent. “Position” refers to the points of a fixed background space. On the
other hand, we expect that the concept of such a background space emerges as the
classical limit of an underlying quantum theory of space and time. So, our present
formulation of quantum theory is of a somewhat hybrid nature in that it describes
quantum objects as being “embedded in” or “living on” a classical space. Although
the interactions among the quantum objects are treated in a quantum mechanical
way, the concepts of space and space-time and, in particular, the relations between
quantum objects on the one side and space-time on the other side are footed on a
classical description.

One might object by pointing out that Planck’s scale is about 25 orders
of magnitude away from atomic scales and, therefore, should not play any role
in the quantum world as we see it today. However, there is at least one other
structure of space (and space-time) which survives the 25 orders of magnitude:
the metric field in special and general relativity. Space-time is more than a simple
set of events, otherwise it would be impossible to measure and compare distances
at different space-time points. This structure is usually taken for granted, but it
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should be viewed as the large scale remnant of some unknown underlying structure
of quantum space-time.

In this article, I will argue that already a simple reformulation of spatial
concepts in terms of a relational interpretation might give us a new understanding
of “locality”. This concept does not only overcome the seeming discrepancy
between realism and the violation of Bell’s inequalities in our quantum world,
but it almost trivially explains the other weird aspects mentioned above, like the
particle-wave duality, the double-slit experiment etc. Although these concepts
should rather be formulated in terms of space-time events and not in terms of
spatial points, the major part of this article refers to a “relational theory of space”,
and only at the end there will be a few remarks about a generalization towards a
“relational theory of space-time”.

The expression “relational quantum mechanics” already exists in the literature
and refers to Rovelli’s (and others) interpretation of quantum mechanics (Rovelli,
2004), according to which states or the results of measurements do not have
an absolute meaning, but all these concepts of quantum mechanics are to be
understood in relation to the state of an observing system. (This interpretation is
close to Everett’s “relative state” interpretation of quantum mechanics (Everett,
1957), although the two interpretations differ with respect to the “many world”
aspect which deWitt later attached to Everett’s interpretation (deWitt, 1970).)

In a way, the present approach can be considered as a refinement or extension
of Rovelli’s concept. In relational quantum mechanics the state of a system is not
attributed to the system itself (like in ontic interpretations) or to the observing
system (like in epistemic interpretations), but the state is rather attributed to the
boundary (or “cut”) between the quantum system and the rest of the world, and it
contains the information or knowledge which the rest of the world in principle has
about the quantum system due to past interactions and present correlations between
these two systems. The “refinement” discussed in the present article consists in
the observation that in a world with relational space structure, the “cut” could be
placed between the particle and space, i.e., the wave function ψ(x) describes the
“information” which space has about the particle. In general relativity, space-time
has its own degrees of freedom which interact with other objects from which it
can be deprived, so why not deprive the objects from space-time and consider
them as entities of their own? “Position” should not be treated as an embedding
of a particle, but as an external property arrising from the relations between this
particle and those objects which make up space-time.

In the next Section 2, I give a brief introduction to models of relational
spaces and to the general ideas of how a relational picture for quantum objects
and spatial points may influence our understanding of quantum mechanics. Even
if some of the more specific ideas elaborated in the following sections should turn
out to be wrong, the general scenario explained in Section 2 may still be true. In
Section 3, I will specify the ideas by making some assumptions about the type of
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relations between quantum objects and spatial points. Section 4 describes a simple
model for the propagation of relations and introduces a new concept of locality.
The essential purpose of Sections 3 and 4 is to show that the relational picture
fits well into the present formulation of quantum mechanics and that there is no
need to change the formulas but to change the interpretations. In Section 5, I will
raise the question whether all amplitudes in quantum mechanics express relations,
and I will give some examples of relational concepts in todays standard model
of elementary particles. Section 6 contains a few remarks about the extension of
“particles in a relational space” to a model of “events in relational space-time”. A
brief summary concludes this article.

2. RELATIONAL SPACE

The clearest and most uncompromising formulation of a relational theory of
space has been put forward by René Descartes in his “Principles of Philosophy,”
published in 1644 (Descartes, 1644). In the second part of his “Philosophiae,”
entitled “About the Principles of Corporal Things,” Descartes argues that there is
no such thing as empty space, and our whole concept of space is just an abstraction
of what in reality are “relations” between bodies. For Descartes these relations
express “immediate neighborship” or the “contact” of bodies. “Movement” is
merely a change of these relations, i.e. a rearrangement of objects. The “bodies”
may not always be visible to us, but “if God would remove from a vessel all the
body” then “the sides of the vessel would thus come into proximity with each
other.”

Later, similar concepts have been put forward by Gottfried Wilhelm Leibniz.
In his famous exchange of letters with Samuel Clarke (Clarke, 1716), he puts
his concepts of a relational space and relational time against Newton’s concepts
of absolute space and absolute time. For Leibniz, space is just an abstraction of
“the order of coexistences.” Leibniz is less clear about the nature of the relations
between physical objects and refers to them as “some relation of distance” (in
a different context he speaks about “perceptions” (Leibniz, 1954)), but the fun-
damental ideas are similar to those of Descartes. Towards the end of the 19th
century it was Ernst Mach who brought up the subject again (Mach, 1883). His
work has greatly influenced Einstein in his development of the general theory of
relativity.

More recently, the importance of a relational formulation of the fundamental
laws of physics has been emphasized by Julian Barbour (amongst others), who,
together with B. Bertotti, constructed a theory of mechanics based on relational
principles (Barbour and Bertotti, 1977, 1982). In other approaches, the microscopic
structure of space-time is modelled in terms of relational principles, like the causal
sets of Sorkin (1991).
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How does a relational space look like? Imagine certain objects which, for
simplicity, will be represented by points, keeping in mind, however, that any notion
of “extension in space” for an elementary object is meaningless in the relational
view. Also for simplicity, I will distinguish objects representing “spatial points”
and objects representing particles. In this section, I will consider only one type
of relation. This relation is represented by a line. This leads to the concept of a
graph. The relation is either present or not present. Mathematically, this can be
expressed by the adjacency matrix:

A(x, y) =
{

1 if x and y are related

0 otherwise
. (1)

In the next section, I will add some hypotheses about the nature of the relations,
and the concept of an adjacency matrix will be generalized.

The spatial points are related in such a way that, on large scales, space
looks like a three dimensional manifold. A three dimensional lattice has this
property, however, there is no reason (and no necessity) to assume that space at
the fundamental level resembles a regular lattice.

The distance between two points is defined purely intrinsically as a suitable
average of the lengths of paths connecting the points. The length of a path is
given by the number of lines of this path. It will be important to notice that the
(macroscopic) distance between points is not determined by the length of the
shortest path alone, but by a suitable average over all paths (where a possible
weighting of paths might depend on the length of a path). I will say more about
“distance” later.

The “position” of an object is defined by its relation to spatial points. There-
fore, the position of an object can be localized or extended, depending on whether
this object has only relations to points which are close to each other or far apart
from each other with respect to the intrinsic distance. It is even conceivable that a
single object can be at two “places” simultaneously (see Fig. 2a), so the relational
picture overcomes “the only mystery” (this expression is due to Feynman (1965))
of quantum mechanics. In this picture, a particle can be related to two places at the
same time which may allow for a natural explanation of the double slit experiment.

Fig. 1. (a) A relational particle can be at two places at the same time. (b) Two particles which
are far apart with respect to the spatial distance can still be immediate neighbors.
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Notice that only the relations matter, not the “length” of a line or the “position”
of an object in a graphical representation.

Next, imagine two particle-like objects each having its relations to spatial
points. With respect to the intrinsic relations among spatial points, these two
particles could be far apart from each other. However, these particles may be
immediate neighbors with respect to other relations (in the next Section, I will
argue that measures of entanglement are a good candidate for the relations be-
tween particles, but for the moment I will not make any assumptions about the
nature of these relations). With respect to this relation the particles are “imme-
diate neighbors” (see Fig. 2b). Performing an experiment on one of the particles
can immediately influence the other without violating locality, even though the
particles look “miles apart” from each other with respect to their spatial rela-
tions. (In Section 4 the concept of locality is generalized to the dynamics of
relations.)

In order that two objects are observed to have a large spatial distance
even thought they are directly related to each other (and therefore there ex-
ists a path of length 1 connecting these objects), it is important that not only
the shortest path on the graph contributes to the distance, but all paths. The
fact that there exists a short-cut (via the relation between the particle-like ob-
jects) does not significantly change the macroscopic distance between two spatial
points, which is obtained by a suitable averaging procedure. A huge number
of such short-cuts, stemming, e.g., from many particles, could alter the macro-
scopically observable spatial distance between spatial points. (This observation
might even be a starting point for bringing in general relativity. That the pres-
ence of matter changes the metric is one more feature which looks more nat-
ural in a relational theory of space. However, further conclusions are still very
speculative.)

Thus, we have seen that the relational picture solves two of the major mys-
teries of quantum mechanics almost trivially: the fact that a particle can “be in”
(in the sense of “have relations to”) more than one place at the same time, and the
“spooky action at a distance” in the EPR-scenario.

There is a third aspect of quantum mechanics which appears more natural
in the relational picture. When the spatial relations of two identical objects are

Fig. 2. (a) Two identical particles having relations to different spatial points. (b) The
exchange of the two particles leads to the identical set of relations.
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exchanged (see Fig. 2), the set of relations remains unchanged, i.e., the two
situations not only look identical but they are identical. This is how they are
treated in quantum mechanics.

3. THE WAVEFUNCTION AS THE “ADJACENCY MATRIX”
OF RELATIONS

In this section, I will make the relational picture more concrete by adding a
few hypotheses about the nature of the relations. This will lead to the simplified
picture which is sketched in Fig. 3.

According to this picture, our present formulation of quantum mechanics
includes essentially three types of relations, although we are usually aware of only
one. The first (and well-known) relation emerges in the description of the interac-
tion between quantum systems like elementary particles. Such interactions, in the
context of quantum field theory attributed to the exchange of other particles, lead to
entanglement which can be viewed as a quantum relation among quantum systems.
Hence, quantum mechanics describes the relations among quantum objects. This
aspect of quantum mechanics is not put into question. What is new, however, is
the idea to consider entanglement as a “nearest neighbor” relation. Whenever two
particles or two systems are entangled, they are, in a sense to be defined, immediate
neighbors.

One might object that entanglement is not a binary relation. The information
about an arbitrary entangled state of more than two particles cannot be decomposed
into pairwise relations and thus cannot be represented by a simple graph. This is
true and might hint at the possibility that the relational picture presented in this
article has to be generalized from simple graphs to, for instance, abstract simplicial
structures, including also ternary and higher order relations. Despite very intensive
research, a satisfying theory for measures of entanglement is still missing (see e.g.
Horodecki et al., 1996; Hill and Wootters, 1997; Wootters, 1998; Bruß, 2001, and

Fig. 3. Three types of relations are present in our formulation of quantum mechanics. Relations
among quantum objects are due to entanglement, relations among spatial points should in a large
scale limit lead to the metric, and relations between quantum objects and spatial points are described
by the wave function.
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references therein.) A characterization by graphs has been attempted in Plesch
and Bužek (2003), and, more recently, Bob Coecke found a formulation in which
entanglement can be characterized as a generalized relation in a categorial sense
(Coecke, 2000). A more detailed theory of entanglement might influence the
details of the framework presented here, but the general ideas remain untouched.

The second type of relations is usually not mentioned explicitly, but it is
inherent in the description. These are the relations among spatial points (or space-
time points, i.e. events). As we are not yet in the possession of a fundamental
quantum theory of space and time, we do not know the nature of these relations
on Planck’s scale. Possible candidates are Rovelli’s and Smolin’s “loop space”
(Rovelli and Smolin, 1990) or an extension of the spin networks of Penrose
(Penrose, 1972). Whatever the theory at Planck’s scale may look like, in a large
scale limit these relations should lead to the emergence of distance and to the
metric field gµν of general relativity. In lack of the fundamental theory, I will
adopt here the simple relational model of the previous section: Spatial points are
represented by the vertices of a network (or graph) and the relations between these
spatial points will be represented by the lines of the graph. This model is to be
understood as a “semi-phenomenological” description of space at small distances.

The third type of relations is usually not even mentioned implicitly, but
may be the most important one for our understanding of quantum mechanics.
These relations describe the connections between quantum objects (particles) and
space (or space-time). On a fundamental level (at Planck’s scale), there may
be a complicated mixture of entanglement involving spatial points and quan-
tum particles. In the large scale limit, which governs the phenomena of elemen-
tary particles and atoms, this mixture is effectively described by the wave func-
tion of quantum mechanics. So, rather than representing a strict “either-or-not”
-relation, the lines in the figures presented above represent complex numbers,
and these complex numbers express a semi-classical limit of the entanglement
between spatial points and quantum objects. In this way the interference of
relations can be explained, i.e., the fact that relations can “annihilate” each
other by superposition. (On a more fundamental level such an annihilation can
also be explained by opposite “flows” along the lines representing the rela-
tions. One may even speculate that the relations represent a “flux of (quantum)
information”.)

Let ψe(x) be the wavefunction of an electron. We define the generalized
adjacency matrix attributed to a system consisting of spatial points and an electron
by

A(e, x) = ψe(x), (2)

where e refers to the “object” electron and x to a labeling of the spatial points (com-
pare Fig. 3). Thus one arrives at the following form of the generalized “adjacency
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matrix” including spatial points xi and quantum objects ei :

Ad �




A(ei, ej ) �
(

measure for
entanglement

)
A(ei, xj ) � �i(xj ) wave function

A(ei, xj )T � �i(xj )∗ A(xi, xj ) −→ gµν

(large scale limit)



(3)

4. THE DYNAMICS OF RELATIONS

In this section, I will speculate about the possible dynamics of the model
introduced in the last section. In particular, I will propose a new locality principle,
based on the dynamics of relations. At this point the notion of time enters. In lack
of a fundamental theory, I will use a “semi-phenomenological” ansatz and consider
“time” as a sequence of discretized steps and formulate an iterative equation for
the entries of the adjacency matrix in Eq. (2). The objects themselves don’t move.
Movement is interpreted as a change of relations.

For the “propagation of relations” it seems close at hand to require the
following general “locality principle”: Two quantum objects e1 and e3 can only
become related, if there exists a third quantum object e2 such that e1 and e2 as
well as e2 and e3 are already related. As this step-wise propagation of a relation
involves a single “time-step” (which is expected to be of the order of the Planck
time), it would appear to be “immediate” compared to macroscopic scales.

As far as entanglement among quantum systems is concerned, this locality
principle can be demonstrated in a well-known example: the measurement on
an EPR-state. Consider a system consisting of three subsystems: two entangled
electrons e1 and e2 in an EPR-state, and a measurement apparatus (assumed to be
in the state |0〉3 initially). Hence, the initial state is:

|�〉i = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)|0〉3. (4)

The apparatus now performs a measurement on electron 2 (by an ordinary local
interaction involving a flow of energy). This leads to entanglement between the
apparatus and electron 2. If electron 2 were not entangled but in the pure state

1√
2
(| ↑〉2 − | ↓〉2), this process could be described by:

1√
2

(| ↑〉2 − | ↓〉2)|0〉3 −→ 1√
2

(| ↑〉2|+〉3 − | ↓〉2|−〉3). (5)

As an immediate consequence of this interaction, the already existing entanglement
between electron 1 and electron 2 “swapps over” to the measurement apparatus
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and the final state reads:

|�〉f = 1√
2

(| ↑〉1| ↓〉2|−〉3 − | ↓〉1| ↑〉2|+〉3), (6)

expressing entanglement of all three subsystems.
As a side-remark I should like to notice that the relational picture in its present

form does not solve the measurement problem, i.e., it does not describe or explain
the “collapse” of the state 6:

|�〉f = 1√
2

(| ↑〉1| ↓〉2|−〉3 − | ↓〉1| ↑〉2|+〉3) −→




| ↑〉1| ↓〉2|−〉3

or

| ↓〉1| ↑〉2|+〉3

(7)

It is this collapse, not the interaction between electron 2 and the measurement
apparatus, which destroys the entanglement and leads to a (non-entangled) product
state.

As mentioned before, there is a slight difference between the relational picture
of the propagation of relations and the standard quantum mechanical description:
In the standard interpretation, the entanglement between the measurement appara-
tus and electron 1 evolves parallel to the entanglement between the apparatus and
electron 2. In the relational picture presented so far, the entanglement between the
apparatus and electron 1 occurs “one time-step after” the entanglement between
the apparatus and electron 2 has been established. Apart from the fact that the
build-up of entanglement is not an instantaneous “jump” but rather a continuous
process initiated by the interaction, this difference of “one time-step” (which is
assumed to be of the order of Planck’s time, i.e., 10−44 s) cannot be directly ob-
servable. However, we do observe this difference indirectly as the limit on the
propagation velocity (the speed of light) of objects. It would be interesting and
at the same time a first test of this relational picture, if this finite propatation ve-
locity for entanglement could be observed more directly, e.g. in condensed matter
systems or other many particle systems.

In order to be more explicit about the dynamics of the other relations (the
wave function and the spatial part of the generalized adjacency matrix), we need
the adjacency matrix for the spatial points, i.e., we need to know A(x, y). A
simplifying assumption treats the spatial relations as fixed, i.e., space points do
not take part in the evolution of the system and the matrix A(x, y) does not
change. In a more fundamental model, this will no longer be true: the relations
among spatial points will fluctuate and change; however, the large scale limit—
the metric—will remain constant. This puts severe restrictions on the fundamental
dynamics of relations among spatial points.
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Let A(x, y) be the adjacency matrix of the graph (Eq. (1)), then we can define
the so-called graph-Laplacian:

�(x, y) = A(x, y) − V (x, y), (8)

where

V (x, y) =
(∑

z

A(x, z)

)
δ(x, y) (9)

is the diagonal valence matrix of the graph (δ(x, y) being the discrete Kronecker-
Delta). �(x, y) is the discretized analogue of the standard Laplacian on a manifold.
The discretized (free) Schrödinger equation for the relations A(e, x; t) of particle
e now reads:

iA(e, x; t + 1) = iA(e, x; t) − µ
∑

y

�(x, y) A(e, y; t), (10)

where µ is some constant which in the continuum limit has to be renormalized to
the inverse of the mass m of the particle. This may be considered as a discretized
version of quantum mechanics, and in the continuum limit the wavefunction obeys
Schrödinger’s equation.

Employing this formalism, we also arrive at an interesting interpretation of
Feynman’s “summation over paths.” In quantum mechanics, the general solution
of Schrödinger’s equation can be written in the form:

ψ(x, t) =
∫

dy K(x, y; t) ψ(y, 0). (11)

Formally, the kernel K(x, y; t) can be represented as a sum over all paths of
“length” t from point y to point x, where each path is “weighted” by a phase
depending on its classical action. Feynman’s “summation over paths”, or, more
generally, “summation over histories” is an intuitive expression. The formalism
requires, however, that “a particle propagates along path 1 AND path 2 AND
path 3 . . .”, which is difficult to understand. If we interprete the wave function
as encoding the relations between a particle and space, Feynman’s integral reads
“propagation of relation 1 along path 1 AND relation 2 along path 2 AND . . ..”
(According to the locality principle, relations can also split or merge; this finally
leads to the sum over “all” paths.) Interpreted in this way, the sum over histories
appears much less “mysterious.”

5. ARE ALL “PROPERTIES” RELATIONAL?

In standard quantum mechanics we are free to choose a basis in Hilbert
space. If we denote by |ψ〉 some vector in this Hilbert space representing the state
of the system, Schrödinger’s wave function is usually expressed in the position
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base: ψ(x) = 〈x|ψ〉. However, we can also choose the momentum base instead
(ψ̃(p) = 〈p|ψ〉) or the (orthonormal) base defined by the eigenvectors of any
other observable.

In the relational picture outlined in the previous sections, the position basis
is distinguished. We have assumed that the “spatial points” have an objective
reality in the same sense as the particles have an objective reality. The relation
between these two objects is expressed by ψe(x) = 〈x|ψ〉. The transformation
to the momentum representation is obtained by a Fourier transformation like in
standard quantum mechanics. However, it is not clear in what sense 〈p|ψ〉 can be
interpreted as a relation between two “objects”. In this picture there is no objective
“momentum point”, although formally one can represent the relational picture in
any other basis. In an even more general setting one would like to gain back the
lost symmetry and interprete the transition amplitudes 〈a|ψ〉 as a relation between
an “object” ψ and an “object” a.

In its present formulation, the model presented here is far from this goal.
However, I will show that even in standard quantum mechanics and quantum
field theory, many “properties” of particles emerge through relations between this
particle and its environment. The purpose of this section is to show that relational
properties are nothing new even within standard theories in physics.

One of these properties is the mass m of a particle in the standard model of
elementary particles. Usually one starts from a Lagrangian in which all particles
are treated as massless (see, e.g., Weinberg, 2000). As a result of spontaneous
symmetry breaking, the Higgs-field acquires a non-vanishing expectation value,
and due to the Yukawa-type interaction between the other particles in the model
and this background Higgs field the particles acquire a mass.

Yet, we do not have to employ the mechanism of symmetry breaking in
order to find relational properties in quantum field theory. The observed mass
m and charge e of the electron in quantum electrodynamics are not proper-
ties of the “bare” electron. In the standard interpretation, these properties are
determined by the interactions between the electron and the quantum fluctua-
tions of the environment (expressed essentially by the higher order corrections
of the two- and four-point functions in Feynman’s perturbation theory). In stan-
dard QED this leads to the renormalization of the mass and the charge of the
electron.

As a third property, I should like to mention the formalism by which “spin” is
usually described in quantum mechanics. The Hilbert space of square-integrable
functions handles the spatial degrees of freedom of a particle, and in addition
a two-dimensional complex vector space refers to the spin of the particle. This
tensor space construction expresses the fact that the spin degrees of freedom of
a particle are independent of the spatial degrees of freedom. The spin state and
the spatial state of the particle can even be entangled: In the neutron interference
experiments (Hasegawa et al., 2003), the intermediate state of the neutron can be
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written as:

|ψ〉 = 1√
2

(ψ1(x)| ↑〉 + ψ2(x)| ↓〉), (12)

where ψ1 and ψ2 refer to two different paths of the particle through the interfer-
ometer. A similar situation occurs when a photon hits a polarization beam splitter
which reflects photons of one polarization and transmits photons of the orthogo-
nal polarization. Thus, the formal description of spatial and spinorial degrees of
freedom of a particle resemble the description of multi-particle systems.

6. RELATIONAL MODELS OF SPACE-TIME

In this final section, I should like to make some remarks about the generaliza-
tion of the above described model of relations between particles and spatial points
towards a theory of relations between events and space-time points. At present,
these remarks are very speculative.

In 1990, Rudolf Haag raised a very fundamental question (Haag, 1990):
What are elementary events? Despite the fundamental importance the concept of
events has for general relativity, it has never been formalized within the context of
quantum theory or quantum field theory. (A more recent update of his ideas can be
found in Haag (2004).) We know that within the framework of perturbation theory,
we can express the transition amplitudes of quantum field theory by a sum over
Feynman integrals and, in a graphical notation, by a sum over Feynman graphs.
These Feynman graphs show elementary events (like the emission or absorption
of a photon by an electron in QED), but these events are not “factual”, they have
to be considered as “virtual” events or “possibilities”. Haag studies the transition
from possibilities to factuality by looking at increasing clusters of virtual events,
finally arriving at partitions of our universe into factual subsystems.

In the Section 4, I have already explained that the “summation over histories”
(including a summation over all possible kinds and locations of elementary events
allowed by the classical action) appears much more natural in a relational inter-
pretation. The “elementary events” do not involve actual particles propagating
through space, but only certain relations between particles and spatial points. In
this way there is no need to explain a transition from possibilities to facts, but all
relations may be considered as factual. Strictly speaking, however, the “event” of,
say, the scattering of two electrons is distributed all over space-time.

On a closer inspection, however, the generalization of the scenario described
in the previous sections from “spatial points” to “space-time events” turns out to be
more problematic. First, in order to reproduce the standard results of quantum field
theory, a certain event can be related to all other space-time-events, independent
of whether the two events are space-like or time-like (i.e., independent of whether
they are causally related or not). This does not violate the principle of causality
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as long as the relational weights reproduce the known causal Green functions
(whose real parts are also non-zero for space-like events). In a large scale limit
(where “large” can mean anything larger than Planck’s scale) these relations can
still reproduce other discretized models of space-time (like causal sets (Sorkin,
1991) or random networks (Requardt, 2000)).

While the relational picture can reproduce the contribution of a single
Feynman graph (including the integrations over all internal space-time points
of elementary events), the complete theory requires also a sum over all possi-
ble Feynman graphs, i.e. over all possible combinations of elementary events. In
the present picture, this summation cannot be replaced by a single set of rela-
tions. The “superposition principle for a second-quantized theory” turns out to
be more subtle and may require an even more general formalism of relations.

7. SUMMARY

It is argued that if we treat the position of a particle not as an embedding
into some background space but as an expression of the relations between this
particle and spatial points, and if we interprete the wave function in quantum
mechanics as encoding these relations, we arrive at a relational interpretation of
quantum mechanics which not only solves some of its “mysteries” (the particle-
wave duality or the spooky action at a distance) but which might also be a way
to circumvent the restrictions set by Bell’s inequalities on “local realism” in a
hidden variable theory. The aim of the present article was to show that in such a
framework the formalism of quantum mechanics remains almost unchanged, but
the interpretation of many expressions becomes more natural.
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